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Nematic ordering in a cell with modulated surface anchoring: Effects of flexoelectricity
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We have analyzed molecular ordering in a nematic sample sandwiched between two parallel substrates,
characterized by a periodically varying anchoring easy axis. If the periodicityl is smaller than the Debye
screening lengthl D and the nematic material possesses flexoelectric properties, it is necessary to take into
account also the electrostatic and flexoelectric contributions in the thermodynamical potential when the actual
director field is determined. In this framework, for small deviations from the homeotropic alignment we have
derived analytical expressions for the tilt angle (u) and the electrical potential. To establish a connection with
experimentally observable quantities, we have related theu profile to the averagêu2& and investigated its
behavior for different values ofl, the flexoelectric coefficient, and the anchoring strengthw. Our results
indicate that in a nematic with pronounced flexoelectric properties for small enoughl, a kind of subsurface
deformation appears, which substantially decreases^u2&. Therefore, effects of flexoelectricity cannot be ne-
glected in treating nematic cells with modulated anchoring which allows bistable ordering.
@S1063-651X~99!07807-1#

PACS number~s!: 61.30.2v
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I. INTRODUCTION

Thermotropic nematic liquid crystals~NLCs! are organic
materials formed by asymmetric~cigar or disklike! mol-
ecules. Sterical constraints originating from the shape ani
ropy yield positive uniaxial optical properties@1#. Their op-
tical axis coincides with the average molecular orientati
the nematic directorn. Molecules forming nematic phase
have, usually, net permanent electric dipolar and quadrup
moments. However, due to molecular spinning and tumbli
any macroscopic polarization in an undistorted NLC on
average cancels out. This no longer holds if the NLC is
formed. In such a case it can manifest a flexoelectric po
ization, connected with the spatial variation of the directorn,
defined byPi5l i jk]nj /]xk . The tensor with elementsl i jk
is called flexoelectric tensor@1,2#. As discussed in@2#, the
flexoelectric polarizationP can be written in the covarian
form asP5e11n divn2e33n3rotn, wheree11 ande33 are the
flexoelectric coefficients. This polarization is similar to th
piezoelectric polarization present in solid materials poss
ing no center of symmetry@3#. The flexoelectric polarization
can have a dipolar@2# or quadrupolar@4# origin. The dipolar
flexoelectricity is present when the molecules of the m
sophase, in addition to the permanent electrical dipole,
possess shape anisotropy~pear or banana shape!. In this case,
a deformation of the director field can lead to a polarizat
of the medium. The quadrupolar origin of flexoelectricity
simpler to understand. In fact, a molecule can posses
electrical quadrupolar momentq0, even if it does not have
any shape anisotropy. The macroscopic density of the q
drupolar tensor can be written asDi j 5rq0Qi j , wherer is
the particle density andQi j the tensor order parameter. It
defined byQi j 5S@ninj2(1/3)d i j #, whereS is the NLC sca-
lar order parameter@1#. If Di j is not constant across the NL
sample, a net macroscopic polarization appears and is g
PRE 601063-651X/99/60~1!/628~10!/$15.00
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by @5# Pi52]Di j /]xj , as it is well known from elementary
electrostatics. HenceP can occur if there is either a variatio
of the directorn ~flexoelectricity@2#! or of the scalar order
parameterS ~order electricity@6#!. This polarization is asso
ciated with long-range electrostatic interactions, which ha
to be taken into account in the thermodynamical potential
addition to short-range interactions giving rise to the nema
phase.

The electric polarization caused by director deformatio
induces an electric field, which couples with the flexoelect
polarization itself@7#. The resulting electrostatic energy ha
to be taken into account when the nematic director field
determined@8#. In a case in which only one-dimension
problems are considered, a simple analysis shows that
electrostatic energy due to the flexoelectric polarizat
renormalizes the elastic anisotropy of the Frank elastic c
stants, with a term depending on the director orientation@9#.
Long ago@10#, it has been shown that taking into account t
flexoelectric contribution to the total energy density, it
possible to explain apparent deviations from the surface
ergy proposed by Rapini and Papoular@11#. For a usual NLC
cell where the sample of slab shape exhibits just a relativ
weak one-dimensional deformation, the electrostatic ene
density of flexoelectric origin can be neglected. In fact, co
mercial NLCs are characterized by a Debye screening len
below one micron@12# so that in a cell where the deforma
tion spreads over several micrometers the flexoelectric ef
is screened by the ions present in the mesophase. In
framework, just a linear coupling of the flexoelectric pola
ization with an external field can be observed@13#, but in the
absence of an external field flexoelectric properties are
detectable. Of course the situation is completely differen
one is interested in analyzing deformations taking place
distances small with respect to the Debye screening len
In this case the balance of mechanical torques and elect
628 ©1999 The American Physical Society
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torques connected to the flexoelectric polarization require
solve electrostatic and elastic problems to find the equi
rium director field@14#.

Our interest in this problem is not only academic. In fa
it is well known that one of the techniques used to orient
NLC is based on SiO evaporation on glass substrates@15#. In
such a case the surface topography is characterized by
riodicity which can be small with respect to the Deb
screening length. Consequently, the NLC in contact w
such substrates undergoes an elastic deformation w
characteristic length is also smaller than the Debye len
and therefore effects of flexoelectricity can become imp
tant. Another technique is based on constructing periodic
crometric surface structures~bigrating made with photosen
sitive materials! @16#. Also in this case, the surfac
periodicity can be well below the Debye screening leng
Simple elastic models proposed to connect such surface
ometry with the anisotropic part of the anchoring energy
just an extension of the Berreman–de Gennes mo
@1,17,18#, in which the NLC energy density reduces to t
Frank elastic energy density, thereby ignoring flexoelect
ity. Similar studies concerning the bistability of nema
samples oriented by periodic sawtoothed surfaces have
been published@16,19,20#. The same model was used
measure the azimuthal anchoring energy on sinusoidal h
graphic unidimensional and bidimensional gratings@21#.
However, for surface structures characterized by the sub
crometric length scale, the Frank energy density repres
only a very rough approximation of the total energy dens
Therefore, in the past some attempts have been made to
into account also the flexoelectric contribution to the fr
energy in the Berreman–de Gennes model@22,23#. However,
the main goal of these investigations was to evaluate
flexoelectricity-induced renormalization of the elastic co
stant.

So far we have reviewed only analyses in which the ne
atic state was completely characterized by the directon,
which was equivalent to assuming that the NLC scalar or
parameterS is constant across the nematic sample. A m
realistic theoretical analysis has to take into account that b
n and S are position-dependent. Within the Landau–
Gennes approach it is possible to show that surface indu
spatial variations ofS induce subsurface deformations inn
@24#. Our analysis in Ref.@24# reports a simple one
dimensional problem where the spatial variation ofS can be
easily taken into account by the introduction of a qua
splay-bend elastic constant. Similar results have been
tained by Vertogen’s group@25#. The use of the Landau–d
Gennes theory has been demonstrated in a study of orie
tional states induced in a NLC by microtextured substra
@26–28#. It has been shown@26,27# that spatially mixed pat-
terns of different aligning potentials on a mesoscopic sc
induce bulk orientational states which are temperature
pendent. The analyses reported in@24–28# are all neglecting
the possibility of deformation-induced polarization. How
ever,Qi j 5Qi j (r ) can lead to a macroscopic polarization,
discussed above, which can be either of flexoelectric or o
electric origin.

The influence of the order electric polarization on the o
entation of the liquid crystal at the surface was also discus
long ago in Ref.@6#. It was shown that the electrostatic e
to
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ergy due to the order electric polarization, in a simple on
dimensional geometry, can explain the tilted orientations
served experimentally at the nematic-isotropic interface@29#.
A molecular theory of the order electricity has been propo
by Osipov and Sluckin@30#. These authors show that
Landau–de Gennes gradient expansion in the tensor o
parameter has to be employed with extreme caution in
inhomogeneous NLC exhibiting flexoelectric and order el
tric effects.

The aim of the present paper is to show that the flexoe
tric polarization can play a rather important role in determ
ing the actual nematic director orientation in nematic str
tures with at least two-dimensional variation of the direc
field, similar to those considered for technological applic
tions @15,16#. We will, however, neglect variations of th
scalar order parameterS across the NLC sample and, cons
quently, effects of order electricity since the nematic cor
lation length associated toS variations is smaller than the
typical deformation scales considered here@24#. We show
that it is impossible to take into account the flexoelect
contribution to the thermodynamical potential density
simply renormalizing the elastic constants or the anisotro
part of the surface energy. To correctly take into account
flexoelectric polarization, it is necessary to solve a coup
elastic-electrostatic problem@14#. We limit our analysis to a
simple case where the substrates in the NLC sample ind
an orientation close to homeotropic. Moreover, using the
elastic constant approximation we assume, for simplicity,
splay and bend constants to be equal (k115k335k), and,
again for the same reason, also the dielectric constant o
nematic material to be isotropic~i.e., e uu5e'5e). Of course,
the analysis can be easily modified to take into account
elastic and dielectric anisotropies, as well as the spatial va
tion of the scalar order parameter, but these aspects of
problem are expected to be important only if the analysis
supposed to yield quantitative rather than only qualitat
results. We assume also that there is a periodic distribu
of the surface easy direction, which is supposed to mimic
aligning surface obtained by applying any of the experim
tal techniques mentioned above.

Our paper is organized as follows. In Sec. II we pres
the model used for the theoretical investigations. The ela
and electrostatic problems are solved in the limit of sm
deviations from the homeotropic orientation within the NL
sample, taking into account dielectric properties of the s
strates and considering a finite anchoring energy at the N
solid substrate interface. Apart from this most general ca
in special cases of strong anchoring, contact with a cond
tive medium, or of a NLC without flexoelectric propertie
analytical profiles for the director field and the electrical p
tential are derived. In Sec. III the theoretical results are cr
cally discussed. It is also demonstrated that it is imposs
to find a simple recipe to take into account the flexoelec
polarization.

II. MODEL

Consider a nematic slab of thicknessd52D, limited by
two identical substrates, tending to orient NLC molecu
parallel to the local surface normal. Due to specific surfa
treatment, let these substrates be characterized by a per
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surface geometry. In the framework of our model, such s
strates will be simulated by flat surfaces with an anchor
easy axis which varies periodically around the average,
homeotropic orientation. Let us define a Cartesian refere
frame with the origin in the middle of the slab. The limitin
substrates are then located aty56D and thex axis is par-
allel to them~see Fig. 1!. The system under consideration
formed by the lower ~l! Rl (y<2D) and upper ~u!
Ru (y>D) regions outside the slab, representing the s
strates, and the regionRn (2D,y,D) between them, rep
resenting the nematic liquid crystal (n). Our analysis will be
limited to two-dimensional planar deformations, thereby
suming the twist distortion to be absent. In this framewo
the nematic directorn5n(x,y) is fully defined in terms of
the tilt angle u(x,y), as shown in Fig. 1:n5 i sinu(x,y)
1j cosu(x,y), wherei and j are unit vectors parallel to thex
and y axes, respectively. The flexoelectric polarizationP is
given by P5e11n div n2e33n3rotn. In such a planar and
two-dimensional problem it is possible to rewriteP in terms
of the tilt angleu,

P5 iFe

2
sin~2u!

]u

]x
2~e sin2 u2e33!

]u

]yG
2 j F ~e sin2 u2e11!

]u

]x
1

e

2
sin~2u!

]u

]yG , ~1!

wheree5e111e33. In the limit of uuu!1 and uu2(]u/]y)u
!uu(]u/]x)u!u]u/]yu, P reduces to

P5 ie33

]u

]y
1 je11

]u

]x
. ~2!

FIG. 1. Slab geometry: an undulating surface with locally h
meotropic anchoring is replaced by a flat substrate with a modul
anchoring easy axis. The definition of the tilt angleu and of the
wavelengthl.
-
g
.,
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Using E and u as thermodynamical coordinates, the bu
thermodynamical potential density of the nematic liqu
crystal is given by

f n5
1

2
k~¹u!22

1

2
eE22P•E ~3!

in the one elastic constant approximation and assuming
isotropic dielectric constant@1#. The total bulk thermody-
namical potential densities of the substrates reduce to
electrostatic energy densities

f l52
1

2
esEl

2 and f u52
1

2
esEu

2 , ~4!

where es is the dielectric constant of the substrates,El
5E(x,y<2D), andEu5E(x,y>D).

The total thermodynamical potential of the NLC togeth
with both substrates~per unit length along thez axis! is now
given by

F5(
m

E
Rm

f m~x,y!dx dy1Fs , ~5!

where m5 l , n, and u. HereFs is the anisotropic surface
energy contribution which can be associated with the p
odic surface topography of the NLC-substrate interface.
make our calculation as simple as possible, we represen
undulated surface whose periodicity is characterized b
wavelength l52p/q (q denoting the correspondin
wavevector! by a model plane surface with a sine-modulat
anchoring easy axisu(x)5Q0 sin(qx) ~see Fig. 1!. The sur-
face free energy of such an interface can then be written

Fs5
1

2
w@u~x,2D !1Q0 sin~qx!#2

1
1

2
w@u~x,D !2Q0 sin~qx!#2, ~6!

where we assume that the anchoring strengthw is the same
on the two surfaces. Further, we choose a particular c
where the easy axes are such as to impose antisymm
orientations, hence the waves characterizing the anchorin
both substrates are in exact counterphase.

Since rotE50, E52“f, wheref is the electrical po-
tential. By minimizingF given by Eq.~5! one obtains the
bulk differential equations

]2f i

]x2
1

]2f i

]y2
50 for ~x,y!PRi , ~7!

wherei 5 l ,u, for the substrates, and

]2f

]x2
1

]2f

]y2
2

e

e

]2u

]x ]y
50 for ~x,y!PRn , ~8!

for the electrical potential in the nematic liquid crystal. Fu
ther, the equation for the nematic tilt angle~obtained again
by minimizingF) reads

-
ed
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]2u

]x2
1

]2u

]y2
1

e

k

]2f

]x ]y
50 for ~x,y!PRn . ~9!

Equations~7!–~9! have to be solved in agreement with th
boundary conditions

F2es

]f i

]y G
y56D

5F2e
]f

]y
1e11

]u

]xG
y56D

, ~10!

f i~6D !5f~6D !, ~11!

and

6Fk
]u

]y
1e33

]f

]x G
y56D

1w@u~x,6D !7Q0 sin~qx!#50.

~12!

Here Eqs.~10! and ~11! represent the continuity of the no
mal component of the dielectric displacement and off at the
interfacesy56D, respectively, while Eqs.~12! represent
the balance of the bulk and surface torques.

The symmetry of the electrical problem and the antisy
metrical boundary conditions foru lead to the following
properties:

u~x,y!52u~x,2y! and f~x,y!5f~x,2y!. ~13!

The solutions of linear differential equations~7!–~9!, satis-
fying the boundary conditions~10!–~12! and the symmetry
condition ~13!, can be written as

f i~x,y!5be6qy cos~qx!, ~14!

where1 corresponds toi 5 l and2 to i 5u, which gives the
electrical potential in the substrates; further,
-

f~x,y!5@m1 cosh~a1y!1m2 cosh~a2y!#cos~qx! ~15!

gives the electrical potential in the nematic layer, and,
nally,

u~x,y!5R@m1 sinh~a1y!1m2 sinh~a2y!#sin~qx! ~16!

is the solution for the nematic tilt angle profile. The intrins
flexoelectric lengthsa1

21 and ua2u21 and the quantityR are
given by

a1,25q~s6As211!, R5Ae/k, where s5Ae2/4ek.
~17!

The parameters is proportional toe5e111e33 and thus takes
into account flexoelectric properties of the liquid crystal. T
constantsb, m1, andm2 depend on the flexoelectric coeffi
cients e11 and e33, on the dielectric constant of the sub
strates,es , and on the ratio of the elastic constant versus
anchoring strength, denoted by the extrapolation lengthLe
5k/w. ~They also depend on the material constantsk ande,
which be treated as fixed.! Their forms follow from the
boundary conditions~10!–~12! and are given by

b~e11,e33;Le ,es!5
b~e11,e33;0,es!

V~e11,e33;Le ,es!

and m1,2~e11,e33;Le,es!5
m1,2~e11,e33;0,es!

V~e11,e33;Le ,es!
, ~18!

whereb(e11,e33;0,es) and m1,2(e11,e33;0,es) are the con-
stants obtained in the strong anchoring regime, wherew
→` and, consequently,Le50. Further,V(e11,e33;Le ,es)
is defined by
V~e11,e33;Le ,es!511Le
H C2S a12

qe33

Rk D tanh~a2D !2C1S a22
qe33

Rk D tanh~a1D !1a22a1

tanh~a2D !2tanh~a1D !1~C22C1!tanh~a1D !tanh~a2D !
J , ~19!
ce
-
ob-
id-

rial
whereC1,25(qe11R2a1,2e)/(qes). Furthermore,

b~e11,e33;0,es!5eqD(
i 51

2

m i~e11,e33;0,es!cosh~a iD !

~20!

and

m1,2~e11,e33;0,es!5
m1,2~e11,e33;0,̀ !

M1,2~e11,e33;0,es!
, ~21!

where

M1,2~e11,e33;0,es!5

11~C22C1!
sinh~a1D !sinh~a2D !

sinh@~a22a1!D#

12C2,1tanh~a2,1D !
~22!
and

m1,2~e11,e33;0,̀ !57
Q0

R

cosh~a2,1D !

sinh@~a22a1!D#
~23!

correspond to a NLC in contact with a conductive surfa
~for which es→`) in the strong anchoring limit. The rela
tions reported above give the general solution of the pr
lem. In the following some particular cases will be cons
ered.

A. Nonflexoelectric materials

First we consider the nonflexoelectric nematic mate
(e115e3350). This implies thats50, a152a25q, and
C1,257(e/es). Consequently,



.

the

l
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V~0,0;Le ,es!511qLe coth~qD!, ~24!

and, according to Eqs. ~20!–~23!, b(0,0;0,es)50,
M1,2(0,0;0,es)51, and

m1,2~0,0;0,es!5m1,2~0,0;0,̀ !56
Q0

R

1

2 sinh~qD!
.

~25!

From Eqs.~14! and ~15! it follows that for e115e3350 the
electrical potentialf(x,y)50 everywhere, and from Eq
~16!

u~x,y!5Q0

sinh~qy!

sinh~qD! F 1

11qLe coth~qD!Gsin~qx!

→
Le→0

Q0

sinh~qy!

sinh~qD!
sin~qx!. ~26!
fo
g

or

e
ion

e
t

-
t

he
The last expression describes the tilt angle profile in
strong anchoring limit.

B. Nematic liquid crystal in contact with a conductive medium

In this casees→`, henceC1,2→0. Consequently, from
Eq. ~19! V(e11,e33;Le ,`) is found to be

V~e11,e33;Le ,`!511Le

a22a1

sinh@~a22a1!D#

3cosh~a1D !cosh~a2D !, ~27!

and, according to Eqs.~20!–~23!, M1,2(e11,e33;0,̀ )51 and
b(e11,e33;0,̀ )50. In this framework, using Eqs.~18!, we
also haveb(e11,e33;Le ,`)50. As expected, the electrica
potential in the substrates vanishes. Moreover,
m1,2~e11,e33;Le ,`!57
Q0

R

cosh~a2,1D !

sinh@~a22a1!D#1Le~a22a1!cosh~a1D !cosh~a2D !
. ~28!

The tilt angleu(x,y) and the electrical potentialf(x,y) can be obtained easily by substituting Eqs.~28! into Eqs.~15! and
~16!. Simple calculations give

u~x,y!5Q0

2cosh~a2D !sinh~a1y!1cosh~a1D !sinh~a2y!

sinh@~a22a1!D#1Le~a22a1!cosh~a1D !cosh~a2D !
sin~qx! ~29!

and

f~x,y!5
1

R
Q0

2cosh~a2D !cosh~a1y!1cosh~a1D !cosh~a2y!

sinh@~a22a1!D#1Le~a22a1!cosh~a1D !cosh~a2D !
cos~qx!. ~30!
in-
ro-

,

y
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o-
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Again, in the strong anchoring regime the formulas
u(x,y) and f(x,y) can be derived simply by substitutin
Le50 into Eqs.~29! and ~30!.

III. RESULTS AND DISCUSSION

In the preceding section, we have derived analytical f
mulas for the tilt angle profileu(x,y) and the electrical po-
tential f(x,y), assuming the tilt angle to be small. Now w
are going to analyze the physical behavior of these solut
for different values of the flexoelectric coefficiente5e11
1e33 and surface periodicity wave vectorq. Moreover, we
would like to relateu(x,y) profiles to a quantity that can b
detected experimentally. An appropriate choice turns ou
be ^u2&, i.e., the square of the tilt angleu averaged over the
nematic slab

^u2&5
1

2lDE
2D

D E
2l/2

l/2

u2~x,y!dx dy, ~31!

wherel52p/q. The quantitŷ u2& can be detected, for ex
ample, in a dielectric measurement or in a measuremen
the optical path difference@13#. In addition, we have also
investigated elastic and electrostatic contributions to the t
r

-

s

to

of

r-

modynamical potential density in order to obtain some
sight into the mechanisms which determine the director p
file.

A. Characteristic lengths

Both u(x,y) andf(x,y) profiles are periodic inx and can
be written, according to Eqs.~15! and ~16!, as u(x,y)
5t(y)sin(qx) and f(x,y)5 f (y)cos(qx). For simplicity, in
the following we plot onlyy-dependent parts of the profiles
namely the ‘‘amplitudes’’t(y) and f (y). As it can be de-
duced from Eqs.~15! and ~16!, these are characterized b
two characteristic lengths 1/a1 and 1/ua2u, both depending
on the dimensionless parameters and hence being related t
the flexoelectric coefficiente and on periodicityq @see Eqs.
~17!#. Note that when the flexoelectricity is absent (s→0),
a15ua2u5q, i.e., both lengths become equal, while for pr
nounced flexoelectricity (s large! one of them decrease
(1/a1→1/2qs), while the other one increases (1/ua2u→` for
s→`). Hence, for fixedq and large enoughs in the nematic
sample there are two well distinguished areas with charac
istic behaviors of the profiles, one of these areas being lo
ized to a subsurface layer, and the other spreading thro
the rest of the sample. For smalls it is impossible to distin-
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guish between the short and long scale contributions s
a1;ua2u;q. On the other hand, keepings fixed ~and non-
zero! and increasing the value ofq, both characteristic
lengths decrease. Note that also in this case the distinc
between the long and short scale contributions is enhan
with increasingq. One can conclude that a kind of subsu
face deformation appears in the vicinity of the substrate.
creasing boths and q, this deformation becomes more an
more localized. Such qualitative behavior applies to so
tions obtained for all types of elastic and electrostatic bou
ary conditions considered in the analysis. The boundary c
ditions themselves merely determine the actual surf
values of the tilt angle and of the electrical potential, but
not alter any qualitative features of bulk solutions.

In order to understand the source of such behavior, i
convenient to reconsider the bulk part of the thermodyna
cal potential density~3!. Since thex dependence ofu andf
profiles is known to be given by sin(qx) and cos(qx), respec-
tively, the thermodynamical potential densityf n(x,y) can be
integrated overx, yielding

f̃ n~y!}~q2t21t82!2R2~q2f 21 f 82!12Rsq~ t f 82t8 f !,
~32!

where t85dt/dy and f 85d f /dy. Further, e115e335e/2
was assumed. The expression~32! consists of elastic, homo
geneous electrostatic, and flexoelectric contributions.
third term couples elastic and electrostatic variables. Con
ering first thes50 case where the flexoelectricity is abse
only the first, i.e., the elastic term is relevant. Dealing w
homogeneous anchoring (q50), the tilt angle profilet(y)
minimizing the thermodynamical potential is described b
linear function, as predicted by the ordinary Frank elas
theory for a NLC between two plane-parallel plates. Foq
Þ0, however, the bulk tends towards the homeotropic ali
ment with t50 in order to minimize the positiveq2t2 con-
tribution in Eq.~32!, thereby producing a sort of subsurfa
deformation if the amplitude of the boundary tilt angle,Q0,
is different from 0. Hence, with increasingq the subsurface
deformation becomes increasingly localized. This conclus
could be made also by simply plotting the director field
the vicinity of the modulated substrate imposing a molecu
alignment parallel to the local surface normal.

Let us now consider thesÞ0 case, where the flexoelec
tricity is present. For clarity, we rewrite the flexoelectric co
tribution @last term in Eq. ~32!# as 2Rsq(t f 82t8 f )
52Rsq@ t2d( f /t)/dy#. Equation~32! can now be rewritten
as

f̃ n~y!}t821t2Fq212Rsq
d~ f /t !

dy G2R2~q2f 21 f 82!.

~33!

The functiond( f /t)/dy appearing, beside theq2 term, in the
proportionality constant oft2, turns out to be a positive func
tion ~for S.0!, strongly peaked in the middle of the samp
at y50 @wheret(y) itself is equal to zero#, while approach-
ing a nonzero but small value elsewhere. It also turns out
the dependencest2 and t2d( f /t)/dy are qualitatively similar
and hence it can be reasonable to approximate the pro
tionality constant oft2 as q212Rsq@d( f /t)/dy#;Q(s,q),
ce
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where Q(s,q) is a positive and monotonically increasin
function of bothusu andq. Using now the same reasoning a
above for thes50 case, it can be deduced that through
creasing not onlyq but alsousu, the subsurface deformatio
becomes increasingly localized. The former increase ar
from the elastic free energy while the origin of the latter
the flexoelectric contribution.

B. Profiles and observables

In the following we will again supposee115e335e/2 in
order to reduce the parameter space, which is expected n
change any of the main conclusions of the present analy
We have expressed the flexoelectric coefficiente in terms of
the dimensionless quantitys ~17!. Setting e58.8310211

As/m, as measured for MBBA in Ref.@13#, and, further,k
55310212 N ande;5e0 @1#, yieldss;3. Therefore, in our
analysis we will consider the range 0,s&3, where thes
50 limit corresponds to the absence of flexoelectricity in t
material. Further, we chooseq51/D andq53/D. Note that
in Eq. ~2! giving the flexoelectric polarization, we have pe
formed an expansion for smalluuu and for uu2(]u/]y)u
!uu(]u/]x)u!u]u/]yu Although in our case (Q;5°) this
condition is already slightly violated, we decided not to r
duce the value ofQ0 any further because this would no
correspond to a real modulated substrate used for techno
cal purposes. This inconsistency is, however, not expecte
influence the qualitative behavior of our results. Finally, w
chooseD;1 mm. Note that although here forq53/D the
periodicity l amounts to;2 mm, the characteristic distor
tion length 1/a1 for sufficiently high values ofs is in the
submicron range.

Let us first analyze theu profiles in a strongly anchored
nematic liquid crystal in contact with conductive substra
~Fig. 2!, a case which is rather simple as far as mechan
and electrical boundary conditions are concerned. As the
face gratings are supposed to be in exact counterph
t(6D)56Q0, which in our case was set toQ055°. For
large enough values ofs andq, the t(y) profile indeed rep-
resents a kind of subsurface deformation, which is for, e
s53 andq53/D ~the largest values ofs andq considered!
limited to a layer of thickness;0.1D5100 nm. In that case
the molecular orientation in the bulk approaches the hom
tropic alignment while in the absence of flexoelectricitys
50) the subsurface deformation is less pronounced and
bulk tendency to approach homeotropic alignment is wea
Consequently, for larges andq the observable quantitŷu2&
will be smaller than the one obtained for small values os
and q. From Fig. 5~a! it is evident that in fact̂ u2& is a
monotonically decreasing function of boths andq.

Let us now consider tilt angle profiles for weak anchorin
still retaining the conductive substrates. Figure 3 prese
t(y) profiles calculated forLe5100 nm @31#. As expected,
for a finite anchoring strength the amplitude of the subs
face deformation is reduced, if compared to the infinite a
choring case. Consequently, also the resulting values of^u2&
are fairly lower. However, note that the qualitative behav
of ^u2& versuss @Fig. 5~a!# is still the same as in the infinite
anchoring limit.

Finally, let us analyze a more general case, where
substrates confining the nematic liquid crystal are not c
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ductive plates but, rather, consist of a dielectric mate
characterized by a finite dielectric constant. Further, let
again assume the weak anchoring condition at the confin
boundaries. Looking at Figs. 4 and 5~a!, it is possible to
deduce that both the tilt angle profiles and the^u2& versuss
dependence are almost identical to those obtained for
conductive substrates and that the orientational orde
within the nematic slab is almost insensitive to the chan
of es , the dielectric permittivity of the substrates.

We have also plotted they dependences of the electric
potential in the nematic cell@ f (y), Figs. 2~b!, 3~b!, and
4~b!#. Their qualitative features do not change considera
with changing boundary conditions. Dealing with conducti
substrates, the surface value of the potential is fixed~e.g., to
0!, while if dealing with dielectric ones the potential is fixe
only at y56`, but not at the interfaces where it can var
Also the f (y) profiles show a variation localized close
substrates~again for large enoughs andq), while the varia-
tions in the bulk are rather smooth. Thef (y) profiles are not
very interesting for our analysis since they are not direc
connected to the observable^u2&.

FIG. 2. Strongly anchored NLC (Le50) and conductive sub
strates (e/es50). Solid curves correspond toq51/D, while the
dashed curves correspond toq53/D; Q055° andD51 mm. ~a!
Director profilest(y): within each set of curves~solid or dashed!
the one with the highest slope aty50 corresponds tos50, the one
with the lowest slope tos53, while the one in between them co
responds tos51. ~b! Electrical potential profilesf (y): the top
~straight! curve corresponds tos50, the bottom one tos53, and
the one in between tos51 ~again within the solid and the dashe
sets, respectively!.
l
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g

he
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In Sec. II we have determined the electrical potential a
the tilt angle fields,f(x,y) andu(x,y), respectively. Using
the solutionsf(x,y) and u(x,y), it is possible to evaluate
the electrostatic (f E52 1

2 eE22P•E), Frank elastic @ f F
5 1

2 k(¹u)2#, and the total bulk nematic (f n5 f F1 f E) con-
tributions to the thermodynamical potential. We have plot
f n as a function ofx andy ~Fig. 6!, and for large enoughs
andq both f F and f E turn out to be localized in a subsurfac
layer. Further, our results show that the elastic and elec
static contributions to the thermodynamical potential a
comparable, except fors→0, whenf E! f F . This proves that
if the characteristic deformation scale is small with respec
the Debye screening length,f E cannot be neglected whe
f(x,y) andu(x,y) are determined. In fact, it has been we
known already for a long time@14# that a correct description
of piezoelectric materials, which in some aspects are sim
to flexoelectric nematics, implies solving two types of diffe
ential equations: those following from the mechanical eq
librium, and the Maxwell equations divD50, rotE50, with
the constitutive equationD5eE1P.

C. Anchoring versus flexoelectricity

As already mentioned, in the weak anchoring case,
value of the observablêu2& for given q ands is lower ~for
Le;100 nm roughly by 20% ifq51/D and by 40% ifq
53/D) from the value obtained in the strong anchoring lim
~Fig. 5!. On the other hand,̂u2& decreases with increasings,
too. Plotting^u2& as a function of the extrapolation lengthLe
and ignoring flexoelectricity@s50, Fig. 5~b!#, we observe

FIG. 3. Weak anchoring (Le50.1D) and conductive substrate
(e/es50): ~a! t(y) profiles,~b! f (y) profiles. Other parameters an
conventions are the same as those given in the caption of Fig.
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that ^u2& is a monotonically decreasing function ofLe as
well, exhibiting a behavior similar to that of the^u2& versus
s dependence. Therefore, measuring only the value of^u2&, it
is impossible to conclude which mechanism is respons
for its decrease. According to the above consideration
possible conclusion could be that there is a corresponde
between a finite anchoring strength and a nonzero flexoe
tric coefficient, i.e., that flexoelectricity in our problem ju
renormalizes the anchoring strengthw. But, trying to com-
pare actual tilt angle profiles~Fig. 7! for s50 andsÞ0 and
then adjusting the corresponding anchoring strengths so
obtain the same value of̂u2&, it is evident that an exac
one-to-one mapping between the effective anchor
strength and the flexoelectric coefficient does not exist
fact, fors50 both characteristic lengths discussed above
come equal toq, while for a nonzeros they differ essentially
~the shorter one being related to the subsurface deformat!.
This implies a substantial disagreement of the actualt(y)
profiles in the nematic bulk, although the average val
^u2& may be the same. It is, therefore, impossible to state
the effect of flexoelectricity is just to renormalizew, al-
though the result forw strongly depends on whether flexo
electricity has been taken into account or not.

However, by measuring the temperature~T! dependence
of ^u2&, it could be possible to gain some information co
cerning the interplay of flexoelectricity and weak anchorin
which drive the behavior oft(y) profiles and, consequently
of ^u2&. Recall that̂ u2& is a monotonically decreasing func

FIG. 4. Weak anchoring (Le50.1D) and conductive substrate
(e/es51, R53/V): ~a! t(y) profiles, ~b! f (y) profiles. Other pa-
rameters and conventions are the same as those for Fig. 2.
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tion of s ~for fixed Le andq), or of Le ~for fixed s andq).
Expressings in terms of the nematic scalar order parameteS
and assumingk}S2 @1# and e}aS1bS2 @5# yields s}a
1bS. The relative magnitude of the constantsa and b de-
pends on the microscopic origin of flexoelectricity:a@b for
quadrupolar flexoelectricity and vice versa for dipolar flex
electricity @4,32#. Therefore, in the former case the value os
is expected not to be very sensitive to changingS ~in this
cases}a;const), while in the latter it is rather the opposi
~thens}bSÞconst@32#!. Expressing furtherLe5k/w results
in Le}S, wherew}S has been assumed@33#. Consequently,
if we are dealing with the dipolar flexoelectricity, theLe
versusSands versusSdependences are indistinguishable.
however, the flexoelectricity is of quadrupolar origin, th
two effects can be distinguished since in this cases is essen-
tially S-independent whileLe}S still holds. Increasing the
temperature,S decreases and then, consequently,Le de-
creases, whiles remains almost unchanged. Hence, if flex
electricity is of quadrupolar origin and the anchoring
strong,^u2& should be almost insensitive to changes ofT. If,
on the contrary, flexoelectricity is of dipolar origin or th

FIG. 5. ~a! Observablê u2& vs s for different q: solid lines,q
51/D; dashed lines,q53/D. Within each set of curves, the top on
corresponds to strong anchoring and conductive substrates, the
tom one to weak anchoring and conductive substrates, while the
in between to weak anchoring and dielectric substrates~the last two
being almost indistinguishable!. All other parameters are the sam
as in the corresponding cases shown in Figs. 2, 3, and 4.~b! ^u2& vs
Le in the absence of flexoelectricity; the solid line corresponds
q51/D, and the dashed line toq53/D.
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anchoring is weak,̂u2& is expected to increase when heati
the sample.

IV. CONCLUSION

In the present analysis we have considered elastic de
mations in a flexoelectric nematic material, occurring clo
to the nematic-substrate interface due to the periodic sur
topography of the substrate. We focused our attention
cases where the surface periodicity is high enough that
deformations occur on a submicrometric length scale w
below the Debye screening length. In such cases the equ
rium director profile cannot be determined correctly if flex
electricity is ignored. Therefore, we have performed a th
ough analysis of elastic deformations in a nematic sam
sandwiched between two parallel substrates, investiga
this aspect of the problem. In order to establish a connec
to experimental observables, we have calculated the ave
^u2& and investigated its behavior.

Increasing either the periodicity of the surface gratings
the flexoelectric coefficient, a kind of subsurface deform
tion appears in the vicinity of the substrates. As an exam
we show that if an experimental technique sensitive to^u2&
were employed to measure the anchoring strength, the re
should be interpreted with extreme caution since they
depend substantially on the value of the flexoelectric coe
cient. In fact, there is no simple procedure to describe fle
electricity with an effective anchoring strength.

Neglecting flexoelectricity and the corresponding con
bution to the thermodynamical potential can only be corr

FIG. 6. NLC in contact with dielectric substrates.~a! The total

bulk thermodynamical potential densityf n(x,y). ~b! f̃ n(y)

5* f n(x,y)dx ~solid line!, the Frank elastic contribution tof̃ n(y)

~dashed line!, and the electrostatic contribution tof̃ n(y) ~dotted
line!. s53 andq53/D, while all other parameters are the same
those given in the captions of Figs. 2 and 4.
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when in a specific NLC long-range electrostatic interactio
are rather unimportant in comparison to the short-range o
or when the elastic deformations in a flexoelectric mate
occur on length scales considerably larger than the De
screening length. Although NLCs normally have pronounc
flexoelectric properties, electrostatic interactions have of
been neglected. This is probably correct for treating syste
similar to the classical nematic cell used for many tech
logical applications, but it is certainly wrong when the a
choring modulation occurs on a scale below the Deb
screening length. In this respect our analysis is relevant
any study of microconfined NLC systems, such as mic
droplets and microtubes.

In particular, we conclude that the analyses dealing w
surfaces characterized by submicrometric inhomogene
anchoring presented in@1,17–21# should be reconsidere
taking into account effects of flexoelectricity. Although fo
our model surface the deviations from the homeotropic o
entation in the effective anchoring easy axis are rather sm
and thus do not give rise to bistable ordering, our resu
indicate that flexoelectricity should be taken into account
analyses of real bistable surfaces. For example, the first-o
phase transition between two orientational states with
bulk director in two perpendicular directions, predicted
Refs. @26,27#, could be modified. Similarly, taking into ac
count electrostatic effects could also affect the transition
tween the low and high pretilt regimes observed in Ref.@16#.
Finally, analyses@24–28# dealing with the variation of the
nematic scalar order parameter should, apart from includ
flexoelectricity, take into account order electric effects
well.
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s

FIG. 7. Comparison of two director profilest(y) in a weakly
anchored NLC in contact with dielectric substrates with (sÞ0) and
without flexoelectricity (s50); q53/D. The anchoring strength
has been adjusted so as to obtain the same value of^u2& in both
cases: fors53, Le50.1D, while for s50, Le;0.73D. Note the
different characteristic lengths of the subsurface deformation.e/es

51, R53/V.
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