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Nematic ordering in a cell with modulated surface anchoring: Effects of flexoelectricity
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We have analyzed molecular ordering in a nematic sample sandwiched between two parallel substrates,
characterized by a periodically varying anchoring easy axis. If the periodicity smaller than the Debye
screening lengthp and the nematic material possesses flexoelectric properties, it is necessary to take into
account also the electrostatic and flexoelectric contributions in the thermodynamical potential when the actual
director field is determined. In this framework, for small deviations from the homeotropic alignment we have
derived analytical expressions for the tilt ang @nd the electrical potential. To establish a connection with
experimentally observable quantities, we have relatedgtipeofile to the averagéd?) and investigated its
behavior for different values ok, the flexoelectric coefficient, and the anchoring strengthOur results
indicate that in a nematic with pronounced flexoelectric properties for small enougtkind of subsurface
deformation appears, which substantially decred#8s. Therefore, effects of flexoelectricity cannot be ne-
glected in treating nematic cells with modulated anchoring which allows bistable ordering.
[S1063-651%9907807-1

PACS numbd(s): 61.30—v

l. INTRODUCTION by [5] P;= —dD;; 19x;, as it is well known from elementary
electrostatics. Hende can occur if there is either a variation
Thermotropic nematic liquid crystal®NLCs) are organic  of the directorn (flexoelectricity[2]) or of the scalar order
materials formed by asymmetriigar or disklikg mol-  parametelS (order electricity[6]). This polarization is asso-
ecules. Sterical constraints originating from the shape anisotiated with long-range electrostatic interactions, which have
ropy yield positive uniaxial optical properti¢s]. Their op-  to be taken into account in the thermodynamical potential, in
tical axis coincides with the average molecular orientationaddition to short-range interactions giving rise to the nematic
the nematic directon. Molecules forming nematic phases phase.
have, usually, net permanent electric dipolar and quadrupolar The electric polarization caused by director deformations
moments. However, due to molecular spinning and tumblinginduces an electric field, which couples with the flexoelectric
any macroscopic polarization in an undistorted NLC on thepolarization itself 7]. The resulting electrostatic energy has
average cancels out. This no longer holds if the NLC is deto be taken into account when the nematic director field is
formed. In such a case it can manifest a flexoelectric polardetermined[8]. In a case in which only one-dimensional
ization, connected with the spatial variation of the director problems are considered, a simple analysis shows that the
defined byP;=N\;;dn;/dx,. The tensor with elements;;,  electrostatic energy due to the flexoelectric polarization
is called flexoelectric tensdid,2]. As discussed ii2], the  renormalizes the elastic anisotropy of the Frank elastic con-
flexoelectric polarizatiorP can be written in the covariant stants, with a term depending on the director orientatéin
form asP=e;;n divh—eggnXrotn, wheree;; andegzare the  [ong ago[10], it has been shown that taking into account the
flexoelectric coefficients. This polarization is similar to the flexoelectric contribution to the total energy density, it is
piezoelectric polarization present in solid materials possesgossible to explain apparent deviations from the surface en-
ing no center of symmetry3]. The flexoelectric polarization ergy proposed by Rapini and Papoulat]. For a usual NLC
can have a dipoldr2] or quadrupolaf4] origin. The dipolar  cell where the sample of slab shape exhibits just a relatively
flexoelectricity is present when the molecules of the meweak one-dimensional deformation, the electrostatic energy
sophase, in addition to the permanent electrical dipole, alsgensity of flexoelectric origin can be neglected. In fact, com-
possess shape anisotrajpgar or banana shapén this case, mercial NLCs are characterized by a Debye screening length
a deformation of the director field can lead to a polarizationbelow one microri12] so that in a cell where the deforma-
of the medium. The quadrupolar origin of flexoelectricity is tion spreads over several micrometers the flexoelectric effect
simpler to understand. In fact, a molecule can possess dB screened by the ions present in the mesophase. In this
electrical quadrupolar momeng, even if it does not have framework, just a linear coupling of the flexoelectric polar-
any shape anisotropy. The macroscopic density of the quazation with an external field can be obserJyéa], but in the
drupolar tensor can be written d%;=pq,Q;j, Wherep is  absence of an external field flexoelectric properties are not
the particle density an@;; the tensor order parameter. It is detectable. Of course the situation is completely different if
defined byQ;; = nin; —(1/3)4;; ], whereSis the NLC sca- one is interested in analyzing deformations taking place on
lar order parametd]. If Dj; is not constant across the NLC distances small with respect to the Debye screening length.
sample, a net macroscopic polarization appears and is givdn this case the balance of mechanical torques and electrical
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torques connected to the flexoelectric polarization requires tergy due to the order electric polarization, in a simple one-
solve electrostatic and elastic problems to find the equilibdimensional geometry, can explain the tilted orientations ob-
rium director field[14]. served experimentally at the nematic-isotropic interf&3.

Our interest in this problem is not only academic. In fact,A molecular theory of the order electricity has been proposed
it is well known that one of the techniques used to orient thedy Osipov and Sluckin30]. These authors show that a
NLC is based on SiO evaporation on glass substfdfglsIn ~ Landau—de Gennes gradient expe_msion in the tensor_order
such a case the surface topography is characterized by a pedrameter has to be employed with extreme caution in an
riodicity which can be small with respect to the DebyeiNhomogeneous NLC exhibiting flexoelectric and order elec-
screening length. Consequently, the NLC in contact with"iC effects. _
such substrates undergoes an elastic deformation whose '€ &m of the present paper is to show that the flexoelec-

characteristic length is also smaller than the Debye Iengtﬁ,ric polarization can play a rather important role in determin-

and therefore effects of flexoelectricity can become impor-'”g the actual nematic director orientation in nematic struc-

tant. Another technique is based on constructing periodic mitures with at least two-dimensional variation of the director
crometric surface structurdbigrating made with photosen- field, similar to those considered for technological applica-

sitive materials [16]. Also in this case, the surface tions [15,16. We will, however, neglect variations of the
periodicity can be well below the Debye screening lengthScalar order paramet&racross the NLC sample and, conse-
Simple elastic models proposed to connect such surface gduently, effects of order electricity since the nematic corre-
ometry with the anisotropic part of the anchoring energy aretion length associated 6 variations is smaller than the
just an extension of the Berreman—de Gennes moddyPical deformation scales considered hgzd]. We show
[1,17,18, in which the NLC energy density reduces to the that it is impossible to take into account the flexoelectric
Frank elastic energy density, thereby ignoring flexoelectric:contribution to the thermodynamical potential density by
ity. Similar studies concerning the bistability of nematic simply renormalizing the elastic constants or the anisotropic
samples oriented by periodic sawtoothed surfaces have alGt Of the surface energy. To correctly take into account the
been published16,19,20. The same model was used to flexoelectric polarization, it is necessary to solve a coupled
measure the azimuthal anchoring energy on sinusoidal hold!astic-électrostatic problefi4]. We limit our analysis to a
graphic unidimensional and bidimensional gratinigss]. ~ Smple case where the substrates in the NLC sample induce
However, for surface structures characterized by the subm@" orientation close to homeotropic. Moreover, using the one
crometric length scale, the Frank energy density represen@as'“c constant approximation we assume, for simplicity, the
only a very rough approximation of the total energy densitySPl&y and bend constants to be equiel;ks3=k), and,
Therefore, in the past some attempts have been made to taR82iN for the same reason, also the dielectric constant of the
into account also the flexoelectric contribution to the freeN®matic material to be isotropice., || =€, = €). Of course,
energy in the Berreman—de Gennes md@g|23. However the analysis can be easily modified to take into account the

the main goal of these investigations was to evaluate thglastic and dielectric anisotropies, as well as the spatial varia-
flexoelectricity-induced renormalization of the elastic con-tion of the scalar order parameter, but these aspects of the
stant. problem are expected to be important only if the analysis is

So far we have reviewed only analyses in which the nemSUPPOsed to yield quantitative rather than only qualitative
atic state was completely characterized by the direator results. We assume also that there is a periodic distribution
which was equivalent to assuming that the NLC scalar ordePf the surface easy direction, which is supposed to mimic an
parameterS is constant across the nematic sample. A more?ligning surface obtained by applying any of the experimen-
realistic theoretical analysis has to take into account that boti! téchniques mentioned above.
n and S are position-dependent. Within the Landau—de OUr Paper is organized as follows. In Sec. Il we present
Gennes approach it is possible to show that surface inducdlje model used for the theoretical investigations. The elastic
spatial variations ofs induce subsurface deformationsrin and electrostatic problems are solved in the limit of small
[24]. Our analysis in Ref.[24] reports a simple one- deviations from the homeotropic orientation within the NLC
dimensional problem where the spatial variatiorSafan be ~ S@MPIe, taking into account dielectric properties of the sub-
easily taken into account by the introduction of a quasi-Str"?‘teS and con_S|der|ng a finite anchorlr)g energy at the NLC-
splay-bend elastic constant. Similar results have been ok§_ol|d su_bstrate interface. Apart frqm this most general case,
tained by Vertogen's grouf25]. The use of the Landau—de " special cases of strong anchoring, contact with a conduc-
Gennes theory has been demonstrated in a study of orientlY® medium, or of a NLC without flexoelectric properties,
tional states induced in a NLC by microtextured substrate@nalytical profiles for the director field and the electrical po-
[26-24. It has been show[26,27] that spatially mixed pat- tential are derived. In Sec. Il the theoretical results are criti-
terns of different aligning potentials on a mesoscopic scal€2ly discussed. Itis also demonstrated that it is impossible
induce bulk orientational states which are temperature dek find @ simple recipe to take into account the flexoelectric
pendent. The analyses reported 24—24 are all neglecting Polarization.
the possibility of deformation-induced polarization. How-
ever, Q;;= Q;;(r) can lead to a macroscopic polarization, as
discussed above, which can be either of flexoelectric or order
electric origin. Consider a nematic slab of thickneds- 2D, limited by

The influence of the order electric polarization on the ori-two identical substrates, tending to orient NLC molecules
entation of the liquid crystal at the surface was also discusseglarallel to the local surface normal. Due to specific surface
long ago in Ref[6]. It was shown that the electrostatic en- treatment, let these substrates be characterized by a periodic

Il. MODEL
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A Using E and 6 as thermodynamical coordinates, the bulk
¢ > thermodynamical potential density of the nematic liquid
crystal is given by
ANIA

f ZEK(VB)Z—EeEZ—PE )
"2 2

in the one elastic constant approximation and assuming an

\JI/ 0 ) isotropic dielectric constanitl]. The total bulk thermody-
namical potential densities of the substrates reduce to the
electrostatic energy densities

flm—2ef? and fu=- >e2
1= 265 | an The ZESEU’ (4)
LI y= where € is the dielectric constant of the substratés,
70%0710 =E(x,y=-D), andE,=E(x,y=D).
y The total thermodynamical potential of the NLC together
n with both substrateer unit length along the axis) is now
0 given by
NIARY _ f
F= fm(X,y)dx dy+ F, 5
TIRRRRRRRRRRRRRRRN Y, y=—D 2 R X y)AX Ayt Fs ©

FIG. 1. Slab geometry: an undulating surface with locally ho-yhere m=I, n, and u. Here % is the anisotropic surface
meotropic anchoring is replaced by a flat substrate with a modulategnergy contribution which can be associated with the peri-
anchoring easy axis. The definition of the tilt angleand of the (i '5\;rface topography of the NLC-substrate interface. To
wavelengthi. make our calculation as simple as possible, we represent an

surface geometry. In the framework of our model, such Subyndulated surface whose periodicity is characterized by a

strates will be simulated by flat surfaces with an anchorinqvltllgzgi/e encggg; b);/:azr:c/Jg el (;:)?angesnucﬁgge V\t/?tﬁ a(;?rr]ree_snggggllgtge d

easy axis which varies periodically around the average, "e'anchoring easy axig(x)=0,sin@) (see Fig. 1 The sur-

homeotropic orientation. Let us define a Cartesian referenc; : .
frame with the origin in the middle of the slab. The limiting face free energy of such an interface can then be written as

substrates are then locatedyat =D and thex axis is par- 1

allel to them(see Fig. 1 The system under consideration is 7s:§W[ 6(x,—D)+ 0y sin(gx)]?

formed by the lower(l) R, (y<—D) and upper (u)

R, (y=D) regions outside the slab, representing the sub- 1

strates, and the regidR,, (—D<y<D) between them, rep- +§W[ 6(x,D)— 0O, sin(gx)]?, (6)
resenting the nematic liquid crystai). Our analysis will be
limited to two-dimensional planar deformations, thereby aSyyhere we assume that the anchoring strenvgis the same
suming the twist distortion to be absent. In this framework
the nematic directon=n(x,y) is fully defined in terms of
the tilt angle 6(x,y), as shown in Fig. 1n=isiné(x,y)

+j cosA(x,y), wherei andj are unit vectors parallel to the
andy axes, respectively. The flexoelectric polarizati®ns
given by P=e;ndivn—egnXrotn. In such a planar and
two-dimensional problem it is possible to rewrRen terms

of the tilt angled,

on the two surfaces. Further, we choose a particular case
where the easy axes are such as to impose antisymmetric
orientations, hence the waves characterizing the anchoring of
both substrates are in exact counterphase.

Since roE=0, E=—V ¢, where ¢ is the electrical po-
tential. By minimizing F given by Eq.(5) one obtains the
bulk differential equations

2, 24
(9—¢'+a—¢'=0 for (x,y)eR;, (7)

le . a0 ) a0
P=i Esm(Zﬁ)g—(esm2 0—e33)@ a2 ay?

) wherei=I,u, for the substrates, and
—J

i’ 6 (90+ Csi 26 79 1

(esi 611)5 Esm( )W , (1)

PP PP e %6

wheree=e;;+ez;3. In the limit of |#|<1 and|6?(a6/dy)] 9 (7_),2_2 ax dy
<|6(a6/9x)|<|a6ldy|, P reduces to

=0 for (x,¥)eR,, (8

for the electrical potential in the nematic liquid crystal. Fur-
P=iey +je (7_‘9 @) ther, the equation for the nematic tilt anglgbtained again
Boy TTox” by minimizing F) reads
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for (x,y)eR,. 9

Equations(7)—(9) have to be solved in agreement with the
boundary conditions

{—ES(Z—?I y:iD— —6%4—6113—;3 y:iD, (20
$i(£D)=¢(£D), 11
and
t{k&—e+e33—¢} +w[0(X,=D)FOgysin(gx)]=0.
dy x|,

12

Here Eqgs(10) and(11) represent the continuity of the nor-
mal component of the dielectric displacement an@dft the
interfacesy= =D, respectively, while Eqs(12) represent
the balance of the bulk and surface torques.

The symmetry of the electrical problem and the antisym
metrical boundary conditions fo# lead to the following
properties:

o(x,y)=—0(x,—y) and ¢(x,y)=¢(x,—y). (13

The solutions of linear differential equatiofg)—(9), satis-
fying the boundary condition§l0)—(12) and the symmetry
condition(13), can be written as

bi(x,y)=pe=P codqx),

where+ corresponds to=1 and— toi=u, which gives the
electrical potential in the substrates; further,

(14)
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d(X,y)=[p1 cosiayy)+ u, cosi{a,y)]coggx) (15)

gives the electrical potential in the nematic layer, and, fi-
nally,

0(x,y) =R[ w1 Sinh(ayy) + u, sinh(a,y) Isin(gx) (16)

is the solution for the nematic tilt angle profile. The intrinsic
flexoelectric lengthsy; * and|a,| ! and the quantitr are
given by

@y ,=q(s* s +1),

R=/e/k, where s=+/e?/4dek.

(17)

The parametesis proportional tee=e;;+ €33 and thus takes
into account flexoelectric properties of the liquid crystal. The
constantsB, w4, and u, depend on the flexoelectric coeffi-
cients e;; and ez3, on the dielectric constant of the sub-
stratese, and on the ratio of the elastic constant versus the
anchoring strength, denoted by the extrapolation lergth
=k/w. (They also depend on the material constanémd e,
which be treated as fixedTheir forms follow from the

boundary condition§10)—(12) and are given by

B(e11,€33;0,€5)
Q(€q1,€33;L¢,€)

B(ey1,€33;Le €)=

M1 A€11,€33;0,€5)
and Ml,2(e111e33;Leies):Q(ell 933"- € ) ’
l 1 =g Cs

(18

where B(ey;,€33;0,65) and uq A€17,€33;0,65) are the con-
stants obtained in the strong anchoring regime, where
—oo and, consequenti\,,=0. Further,Q)(e1;,€e33;L¢,€s)
is defined by

Q(€1,633:Le,6)=1+1L¢

whereC; ,=(qe;;R— a4 »€)/(ges). Furthermore,

2

e e
C2< a1 qR_?lf tanr(azD)_C1< ao— qR_?lf tanf(alD)-I—az—al
tanh( a,D)—tanh «;D) +(C,— C)tani a;D)tanh a;,D) ' (19
|
and
cos D
0 r(az,l ) 23)

ﬁ(ell,e33;0,65)=eq'°;1 wi(€11,€33;0,65)c0SH ;D)

(20)
and
,u,lz(ell,egg;oroo)
€11,€33;0,6¢) = : 21
H1,A€11,€33;0,€5) M1 A€11,€33;0,€5) 2y
where
sinh(a;D)sinh(a,D)

1+(C2—Cy)

sinf (a;— a,)D]
1- Czyltanlf( a’zle)

M; A€11,€33;0,65)=
(22

Iu‘l,Z(ellve33;oaoo): IF Sinl,[(az_al)D]

correspond to a NLC in contact with a conductive surface
(for which e;—) in the strong anchoring limit. The rela-
tions reported above give the general solution of the prob-
lem. In the following some particular cases will be consid-
ered.

A. Nonflexoelectric materials
First we consider the nonflexoelectric nematic material
(e;1=e33=0). This implies thats=0, a;=—a,=q, and
C1 .=+ (€les). Consequently,
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Q(0,0,Le,e)=1+qLscoth gD), (24) The last expression describes the tilt angle profile in the
strong anchoring limit.
and, according to Egs.(20—(23), B(0,0;0¢.)=0,
M; 0,0;0¢5)=1, and
B. Nematic liquid crystal in contact with a conductive medium

. - . - 9 1 In this casee;— 0, henceC; ,—0. Consequently, from
= =4+ ] ’
#140.0:06) =11 A0.0:0%) == 2" 5 inHqD) - oy E#09 (e11,603:L..¢) is fotind to be ey
From Egs.(14) and (15) it follows that fore;;=e33=0 the Q(eq1,633;Le,@)=1+L= *2”
electrical potentialg(x,y)=0 everywhere, and from Eq. sinf{ (a;~a,)D]
(16) X cosl{a;D)cosia,D), (27)
0(x,y)=0, sinh(y) sin(gx) .
' sinh(gD) | 1+ qL.coth(gD) and, according to Eq$20)—(23), M, 5(€;;,€33;0)=1 and
Lo ) B(eq1,€33;0,0)=0. In this framework, using Eq$18), we
¢ sinh(qy) sin(gx) 26) also haveB(e;;,es3;Le,)=0. As expected, the electrical
9sinh(gD) %) potential in the substrates vanishes. Moreover,

] 0 cosh{a, D)
0= 90
rrd®uCasile ) = T S D]+ Lu(@,— y)costa,D)cosi ;D) |

(28)

The tilt angled(x,y) and the electrical potentiab(x,y) can be obtained easily by substituting E(&8) into Egs.(15) and
(16). Simple calculations give

—coshi a,D)sinh(a4y) +cosi a1D)sinh(a,y)

g(x'y):G)Osinlf(az—al)D]—i-Le(az—al)cosf(alD)Cosf(azD) Sin(@x) 29
and
1 —cosh a,D)cosi aqy) + cosia;D)cosh a,y)
P(xy)= §®°sinl[(a2—al)D]+Le(az—al)cosr(alD)cost(azD) coggx). (30)

Again, in the strong anchoring regime the formulas formodynamical potential density in order to obtain some in-
0(x,y) and ¢(x,y) can be derived simply by substituting sight into the mechanisms which determine the director pro-
L.=0 into Egs.(29) and(30). file.

Ill. RESULTS AND DISCUSSION .
A. Characteristic lengths

In the preceding section, we have derived analytical for-
mulas for the tilt angle profil@(x,y) and the electrical po-
tential ¢(x,y), assuming the tilt angle to be small. Now we
are going to analyze the physical behavior of these solution
for different values of the flexoelectric coefficiert=e;4
+e33 and surface periodicity wave vectgr Moreover, we
would like to related(x,y) profiles to a quantity that can be
detected experimentally. An appropriate choice turns out t
be (6?), i.e., the square of the tilt angle averaged over the
nematic slab

Both 4(x,y) and¢(x,y) profiles are periodic ix and can
be written, according to Eqgs(15) and (16), as 6(x,y)
=t(y)sin(@x) and ¢(x,y)=f(y)cos@x). For simplicity, in
the following we plot onlyy-dependent parts of the profiles,
namely the “amplitudes™t(y) and f(y). As it can be de-
duced from Eqs(15) and (16), these are characterized by
two characteristic lengths &{ and 1/«,|, both depending
®n the dimensionless parameteand hence being related to
the flexoelectric coefficieng and on periodicityq [see Egs.
(17)]. Note that when the flexoelectricity is absest{0),
a,=|ay|=q, i.e., both lengths become equal, while for pro-
1 D (N2 L.
<92>:_f f #2(x,y)dx dy, (31) nounced flexoeleptrlcnys( large one of them decreases
2\D J-pJ-x2 (1/a;—1/2gs), while the other one increases |(d4| — « for
s—). Hence, for fixedy and large enoughin the nematic
where\ =27/q. The quantity( #%) can be detected, for ex- sample there are two well distinguished areas with character-
ample, in a dielectric measurement or in a measurement a$tic behaviors of the profiles, one of these areas being local-
the optical path differencgl3]. In addition, we have also ized to a subsurface layer, and the other spreading through
investigated elastic and electrostatic contributions to the therthe rest of the sample. For smalit is impossible to distin-
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guish between the short and long scale contributions sincerhere Q(s,q) is a positive and monotonically increasing
a1~ |a,|~q. On the other hand, keepirgffixed (and non-  function of both|s| andg. Using now the same reasoning as
zerg and increasing the value af, both characteristic above for thes=0 case, it can be deduced that through in-
lengths decrease. Note that also in this case the distinctioereasing not onlyy but also|s|, the subsurface deformation
between the long and short scale contributions is enhancdsecomes increasingly localized. The former increase arises
with increasingg. One can conclude that a kind of subsur-from the elastic free energy while the origin of the latter is
face deformation appears in the vicinity of the substrate. Inthe flexoelectric contribution.
creasing botts and g, this deformation becomes more and
more localized. Such qualitative behavior applies to solu-
tions obtained for all types of elastic and electrostatic bound-
ary conditions considered in the analysis. The boundary con- In the following we will again suppose;;=es;=¢€/2 in
ditions themselves merely determine the actual surfacerder to reduce the parameter space, which is expected not to
values of the tilt angle and of the electrical potential, but dochange any of the main conclusions of the present analysis.
not alter any qualitative features of bulk solutions. We have expressed the flexoelectric coefficet terms of

In order to understand the source of such behavior, it ishe dimensionless quantity (17). Setting e=8.8x10 !
convenient to reconsider the bulk part of the thermodynamiAs/m, as measured for MBBA in Ref13], and, furtherk

B. Profiles and observables

cal potential density3). Since thex dependence of and¢p ~ =5x10 2N ande~5¢, [1], yieldss~3. Therefore, in our
profiles is known to be given by sigf) and cosgx), respec- analysis we will consider the range<®=<3, where thes
tively, the thermodynamical potential densfty(x,y) can be =0 limit corresponds to the absence of flexoelectricity in the
integrated ovek, yielding material. Further, we choosg=1/D andq=3/D. Note that
~ in Eqg. (2) giving the flexoelectric polarization, we have per-
Fn(y) = (QPt?+1'2) —R*(g*f?+ f'?) + 2Rsqtf' —t'f), formed an expansion for smally| and for |6#%(a6/dy)|

(32 <|@(a619x)|<|a6/dy| Although in our case ®~5°) this
condition is already slightly violated, we decided not to re-

where t'=dt/dy and f’=df/dy. Further,e;,=e33=€/2  gyce the value o, any further because this would not
was assumed. The expressi@2) consists of elastic, homo- correspond to a real modulated substrate used for technologi-
geneous electrostatic, and flexoelectric contributions. Theg| purposes. This inconsistency is, however, not expected to
third term couples elastic and electrostatic variables. Considyfiyence the qualitative behavior of our results. Finally, we
ering first thes=0 case where the flexoelectricity is absent, chooseD~1 um. Note that although here fay=3/D the
only the first, i.e., the elastic term is relevant. Dealing with heriadicity A amounts to~2 um, the characteristic distor-
homogeneous anchoring|£0), the tilt angle profilet(y)  tion |ength 14, for sufficiently high values of is in the
minimizing the thermodynamical potential is described by ag;,pmicron range.
linear function, as predicted by the ordinary Frank elastic | g ys first analyze the profiles in a strongly anchored
theory for a NLC between two plane-parallel plates. BOr nematic liquid crystal in contact with conductive substrates
70, however, the bulk tends towards the homeotropic alignirig. 2), a case which is rather simple as far as mechanical
ment witht=0 in order to minimize the positivg®t® con-  and electrical boundary conditions are concerned. As the sur-
tribution in Eq.(32), thereby producing a sort of subsurface face gratings are supposed to be in exact counterphase,
deformation if the amplitude of the boundary tilt angi,,  {(+p)=+@,, which in our case was set ©,="5°. For
is different from 0. Hence, with increasirgthe subsurface |arge enough values afandg, thet(y) profile indeed rep-
deformation becomes increasingly localized. This conclusionesents a kind of subsurface deformation, which is for, e.g.,
could be made also by simply plotting the director field ing—3 andq=3/D (the largest values of and q considered
the vicinity of the modulated substrate imposing a moleculafimited to a layer of thickness-0.1D =100 nm. In that case
alignment parallel to the local surface normal. the molecular orientation in the bulk approaches the homeo-

_Let us now consider the+0 case, where the flexoelec- yopic alignment while in the absence of flexoelectricity (
tricity is present. For clarity, we rewrite the flexoelectric con- —0) the subsurface deformation is less pronounced and the
tribution [last term in Eq. (32)] as Rsqtf’'—t'f) |k tendency to approach homeotropic alignment is weaker.
=2Rsdt*d(f/t)/dy]. Equation(32) can now be rewritten  consequently, for large andg the observable quantity?)

as will be smaller than the one obtained for small valuessof
defi) and g. From Fig. %a) it is evident that in fact %) is a
7 124 12| 42 _D2((2§2 §12 monotonically decreasing function of bashand .
f(y) ="+t 07+ 2Rsqg dy } RAQTTHT. Let us now consider tilt angle profiles for weak anchoring,

(33 still retaining the conductive substrates. Figure 3 presents
t(y) profiles calculated fotL =100 nm[31]. As expected,

The functiond(f/t)/dy appearing, beside thg term, in the  for a finite anchoring strength the amplitude of the subsur-
proportionality constant df, turns out to be a positive func- face deformation is reduced, if compared to the infinite an-
tion (for S>0), strongly peaked in the middle of the sample choring case. Consequently, also the resulting valug¢gof
aty=0 [wheret(y) itself is equal to zerh while approach- are fairly lower. However, note that the gqualitative behavior
ing a nonzero but small value elsewhere. It also turns out thadf ( #%) versuss [Fig. 5@)] is still the same as in the infinite
the dependences andt2d(f/t)/dy are qualitatively similar anchoring limit.
and hence it can be reasonable to approximate the propor- Finally, let us analyze a more general case, where the
tionality constant oft?> as g2+ 2Rsd d(f/t)/dy]~Q(s,q), substrates confining the nematic liquid crystal are not con-
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y/D FIG. 3. Weak anchoringl(;=0.1D) and conductive substrates

(eles=0): (a) t(y) profiles,(b) f(y) profiles. Other parameters and

FIG. 2. Strongly anchored NLCL(=0) and conductive sub- conventions are the same as those given in the caption of Fig. 2.
strates €/e,=0). Solid curves correspond = 1/D, while the

dashed curves correspondde-3/D; ®;=5° andD=1 um. (a) . . .
Director profilest(y): within each set of curveésolid or dashed In Sec. Il we have determined the electrical potential and

the one with the highest slope w0 corresponds te=0, the one  the tilt angle fields ¢(x,y) and 6(x,y), respectively. Using
with the lowest slope te=3, while the one in between them cor- the 50|Ut'0n5¢(_X,Y) andlﬂ(x,zy), it is possible to eyaluate
responds tos=1. (b) Electrical potential profilesf(y): the top ~ the electrostatic fg=—3;€eE“—P-E), Frank elastic[fg

(straigh) curve corresponds te=0, the bottom one =3, and = 3k(V #)?], and the total bulk nematicf§=f-+fg) con-
the one in between te=1 (again within the solid and the dashed tributions to the thermodynamical potential. We have plotted
sets, respectively f, as a function ok andy (Fig. 6), and for large enough

andq both fz andfg turn out to be localized in a subsurface
fayer. Further, our results show that the elastic and electro-
tatic contributions to the thermodynamical potential are
omparable, except fa— 0, whenfz<<f. This proves that
the characteristic deformation scale is small with respect to
the Debye screening lengtliz cannot be neglected when
(x,y) and 6(x,y) are determined. In fact, it has been well
own already for a long timgl4] that a correct description
piezoelectric materials, which in some aspects are similar
flexoelectric nematics, implies solving two types of differ-

ductive plates but, rather, consist of a dielectric material
characterized by a finite dielectric constant. Further, let u$
again assume the weak anchoring condition at the confinin
boundaries. Looking at Figs. 4 andah it is possible to

deduce that both the tilt angle profiles and {l#8) versuss

dependence are almost identical to those obtained for th
conductive substrates and that the orientational orderingf
within the nematic slab is almost insensitive to the change§0

Of &5, the dielectric permittivity of the substrates. ., ential equations: those following from the mechanical equi-
We have also plotted thg dependences of the electrical librium, and the Maxwell equations d=0, rotE=0, with

potential in the nematic cellf(y), Figs. 2b), 3(b), and - 0= eE 4+
4(b)]. Their qualitative features do not change considerabl;}he constitutive equatiod= eE+P.

with changing boundary conditions. Dealing with conductive
substrates, the surface value of the potential is fijeeg., to

0), while if dealing with dielectric ones the potential is fixed As already mentioned, in the weak anchoring case, the
only aty=+o0, but not at the interfaces where it can vary. value of the observablgg?) for givenq ands is lower (for
Also the f(y) profiles show a variation localized close to L,~100 nm roughly by 20% ifg=1/D and by 40% ifq
substrategagain for large enougbandq), while the varia- =3/D) from the value obtained in the strong anchoring limit
tions in the bulk are rather smooth. They) profiles are not  (Fig. 5). On the other hand,6?) decreases with increasiisg
very interesting for our analysis since they are not directlytoo. Plotting(6?) as a function of the extrapolation length
connected to the observal]é?). and ignoring flexoelectricity s=0, Fig. 5b)], we observe

C. Anchoring versus flexoelectricity
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FIG. 4. Weak anchoringl(;=0.1D) and conductive substrates Le/D
(eles=1, R=3N): (a) t(y) profiles, (b) f(y) profiles. Other pa-
rameters and conventions are the same as those for Fig. 2. FIG. 5. (a) Observable( 62) vs s for differentg: solid lines,q

=1/D; dashed linesy=3/D. Within each set of curves, the top one
corresponds to strong anchoring and conductive substrates, the bot-

o : o tom one to weak anchoring and conductive substrates, while the one
well, exhibiting a behavior similar to that of t@?) versus | . . ! ’
9 He") in between to weak anchoring and dielectric substréteslast two

;d_epende_nce. Therefore, mea_surlng only .the V.all'wa’ It .. being almost indistinguishableAll other parameters are the same
is impossible to conclude which mechanism is responsible

. ) . . as in the corresponding cases shown in Figs. 2, 3, affy) 462) vs
for |t§ decrease.. According to the abov_e considerations, 2. in the absenF():e of f?exoelectricity; the golid line corr?aspzonds to
possible conclusion could be that there is a correspondenc&ﬁ: 1/D, and the dashed line g=3/D.

between a finite anchoring strength and a nonzero flexoelec- '

tric coefficient, i.e., that flexoelectricity in our problem just tion of s (for fixed L, andq), or of L. (for fixed s andq).
renormalizes the anchoring strength But, trying to com-  Expressingsin terms of the nematic scalar order param&er
pare actual tilt angle profile&ig. 7) for s=0 ands#0 and and assuming=S? [1] and exaS+bS’ [5] yields sxa
then adjusting the corresponding anchoring strengths so as tebS. The relative magnitude of the constamts@nd b de-
obtain the same value df¢?), it is evident that an exact pends on the microscopic origin of flexoelectriciagb for
one-to-one mapping between the effective anchoringyuadrupolar flexoelectricity and vice versa for dipolar flexo-
strength and the flexoelectric coefficient does not exist. Irelectricity[4,32]. Therefore, in the former case the valuesof
fact, fors=0 both characteristic lengths discussed above beis expected not to be very sensitive to chang#n this
come equal ta, while for a nonzerc they differ essentially casesxa~ const), while in the latter it is rather the opposite
(the shorter one being related to the subsurface deformation(thens«b S+# const[32]). Expressing furthek .=k/w results
This implies a substantial disagreement of the act(g) in LexS, wherewo S has been assum¢d3]. Consequently,
profiles in the nematic bulk, although the average value$f we are dealing with the dipolar flexoelectricity, the,
(6 may be the same. It is, therefore, impossible to state thatersusSands versusS dependences are indistinguishable. If,

that (#%) is a monotonically decreasing function bf as

the effect of flexoelectricity is just to renormalize, al-  however, the flexoelectricity is of quadrupolar origin, the
though the result fow strongly depends on whether flexo- two effects can be distinguished since in this caiseessen-
electricity has been taken into account or not. tially Sindependent whild¢>S still holds. Increasing the

However, by measuring the temperat\(fié¢ dependence temperature,S decreases and then, consequently, de-
of (6?), it could be possible to gain some information con-creases, while remains almost unchanged. Hence, if flexo-
cerning the interplay of flexoelectricity and weak anchoring,electricity is of quadrupolar origin and the anchoring is
which drive the behavior df(y) profiles and, consequently, strong,(6?) should be almost insensitive to changegoff,
of (6?). Recall that 6°) is a monotonically decreasing func- on the contrary, flexoelectricity is of dipolar origin or the



636 BARBERO, SKAVCEJ, ALEXE-IONESCU, AND UMER PRE 60

J(x.y) (arb. units) " (a)

8
4
1
0 L
-1.
/D 1150
-1 -08-06-04-02 0 02 04 06 08 1
14
y/D
12 (b)
= 10 FIG. 7. Comparison of two director profilagy) in a weakly
§ 8 anchored NLC in contact with dielectric substrates wik Q) and
5 6 without flexoelectricity 6=0); q=3/D. The anchoring strength
8 4 has been adjusted so as to obtain the same valy@?yfin both
= cases: fors=3, L,=0.1D, while for s=0, L,~0.73. Note the
Z:Z 2 different characteristic lengths of the subsurface deformattey
0 =1, R=3MV.
0 02 04 06 08 1

/D
7 when in a specific NLC long-range electrostatic interactions

FIG. 6. NLC in contact with dielectric substratds) The total  are rather unimportant in comparison to the short-range ones,
bulk thermodynamical potential densityf,(x,y). (b) T.(y) or when the elastic deformations in a flexoelectric material

= [f,(x,y)dx (solid line), the Frank elastic contribution t,(y) occur on length scales considerably larger than the Debye

(dashed ling and the electrostatic contribution Fq(y) (dotted screening !ength. Alt_hOUQh NLCs nprmally hqve pronounced
line). s=3 andq=3/D, while all other parameters are the same as/€X0electric properties, electrostatic interactions have often

those given in the captions of Figs. 2 and 4. been neglected. This is probably correct for treating systems
similar to the classical nematic cell used for many techno-
logical applications, but it is certainly wrong when the an-
anchoring is weak{6%) is expected to increase when heating 10"ing modulation occurs on a scale below the Debye
the sample. screening length. In this respect our analysis is relevant for
any study of microconfined NLC systems, such as micro-
droplets and microtubes.
In particular, we conclude that the analyses dealing with
In the present analysis we have considered elastic defosurfaces characterized by submicrometric inhomogeneous
mations in a flexoelectric nematic material, occurring closeanchoring presented ifil,17—-21 should be reconsidered
to the nematic-substrate interface due to the periodic surfadaking into account effects of flexoelectricity. Although for
topography of the substrate. We focused our attention oweur model surface the deviations from the homeotropic ori-
cases where the surface periodicity is high enough that thentation in the effective anchoring easy axis are rather small
deformations occur on a submicrometric length scale weland thus do not give rise to bistable ordering, our results
below the Debye screening length. In such cases the equilibrdicate that flexoelectricity should be taken into account in
rium director profile cannot be determined correctly if flexo- analyses of real bistable surfaces. For example, the first-order
electricity is ignored. Therefore, we have performed a thorphase transition between two orientational states with the
ough analysis of elastic deformations in a nematic sampléulk director in two perpendicular directions, predicted in
sandwiched between two parallel substrates, investigatingefs.[26,27], could be modified. Similarly, taking into ac-
this aspect of the problem. In order to establish a connectionount electrostatic effects could also affect the transition be-
to experimental observables, we have calculated the averad@een the low and high pretilt regimes observed in [RES].
(02> and investigated its behavior. Finally, analyse§24—2¢g dealing with the variation of the
Increasing either the periodicity of the surface gratings omematic scalar order parameter should, apart from including
the flexoelectric coefficient, a kind of subsurface deforma-flexoelectricity, take into account order electric effects as
tion appears in the vicinity of the substrates. As an exampleyell.
we show that if an experimental technique sensitivéat)
were employed to measure the anchoring strength, the results
should be interpreted with extreme caution since they can
depend substantially on the value of the flexoelectric coeffi- We wish to acknowledge the financial support of the Min-
cient. In fact, there is no simple procedure to describe flexoistry of Science and Technology of Sloverifarant No. J1-
electricity with an effective anchoring strength. 0595-1554-98 and of the European UniofProject INCO
Neglecting flexoelectricity and the corresponding contri-Copernicus No. ERBCIC15CT960744 and TMR network
bution to the thermodynamical potential can only be correcFMRX-CT 98-029.
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